Translated form C++ (see comments at source)
Code: Select all
;/* NAME: smbPitchShift.cpp
; * VERSION: 1.2
; * HOME URL: http://www.dspdimension.com
; * KNOWN BUGS: none
; *
; * SYNOPSIS: Routine For doing pitch shifting While maintaining
; * duration using the Short Time Fourier Transform.
; *
; * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
; * (one octave down) And 2. (one octave up). A value of exactly 1 does Not change
; * the pitch. numSampsToProcess tells the routine how many samples in indata[0...
; * numSampsToProcess-1] should be pitch shifted And moved To outdata[0 ...
; * numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
; * Data in-place). fftFrameSize defines the FFT frame size used For the
; * processing. Typical values are 1024, 2048 And 4096. It may be any value <=
; * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
; * oversampling factor which also determines the overlap between adjacent STFT
; * frames. It should at least be 4 For moderate scaling ratios. A value of 32 is
; * recommended For best quality. sampleRate takes the sample rate For the signal
; * in unit Hz, ie. 44100 For 44.1 kHz audio. The Data passed To the routine in
; * indata[] should be in the range [-1.0, 1.0), which is also the output range
; * For the Data, make sure you scale the Data accordingly (For 16bit signed integers
; * you would have To divide (And multiply) by 32768).
; *
; * COPYRIGHT 1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
; *
; * The Wide Open License (WOL)
; *
; * Permission To use, copy, modify, distribute And sell this software And its
; * documentation For any purpose is hereby granted without fee, provided that
; * the above copyright notice And this license appear in all source copies.
; * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS Or IMPLIED WARRANTY OF
; * ANY KIND. See http://www.dspguru.com/wol.htm For more information.
; *
; *****************************************************************************/
;
; #include <string.h>
; #include <math.h>
; #include <stdio.h>
;
; #define M_PI 3.14159265358979323846
; #define MAX_FRAME_LENGTH 8192
;
; void smbFft(float *fftBuffer, long fftFrameSize, long sign);
; double smbAtan2(double x, double y);
;
;
; // -----------------------------------------------------------------------------------------------------------------
;
;
; void smbPitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float *indata, float *outdata)
; /*
; Routine smbPitchShift(). See top of file For explanation
; Purpose: doing pitch shifting While maintaining duration using the Short
; Time Fourier Transform.
; Author: (c)1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
; */
; {
;
; Static float gInFIFO[MAX_FRAME_LENGTH];
; Static float gOutFIFO[MAX_FRAME_LENGTH];
; Static float gFFTworksp[2*MAX_FRAME_LENGTH];
; Static float gLastPhase[MAX_FRAME_LENGTH/2+1];
; Static float gSumPhase[MAX_FRAME_LENGTH/2+1];
; Static float gOutputAccum[2*MAX_FRAME_LENGTH];
; Static float gAnaFreq[MAX_FRAME_LENGTH];
; Static float gAnaMagn[MAX_FRAME_LENGTH];
; Static float gSynFreq[MAX_FRAME_LENGTH];
; Static float gSynMagn[MAX_FRAME_LENGTH];
; Static long gRover = false, gInit = false;
; double magn, phase, tmp, window, real, imag;
; double freqPerBin, expct;
; long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;
;
; /* set up some handy variables */
; fftFrameSize2 = fftFrameSize/2;
; stepSize = fftFrameSize/osamp;
; freqPerBin = sampleRate/(double)fftFrameSize;
; expct = 2.*M_PI*(double)stepSize/(double)fftFrameSize;
; inFifoLatency = fftFrameSize-stepSize;
; If (gRover == false) gRover = inFifoLatency;
;
; /* initialize our Static arrays */
; If (gInit == false) {
; memset(gInFIFO, 0, MAX_FRAME_LENGTH*SizeOf(float));
; memset(gOutFIFO, 0, MAX_FRAME_LENGTH*SizeOf(float));
; memset(gFFTworksp, 0, 2*MAX_FRAME_LENGTH*SizeOf(float));
; memset(gLastPhase, 0, (MAX_FRAME_LENGTH/2+1)*SizeOf(float));
; memset(gSumPhase, 0, (MAX_FRAME_LENGTH/2+1)*SizeOf(float));
; memset(gOutputAccum, 0, 2*MAX_FRAME_LENGTH*SizeOf(float));
; memset(gAnaFreq, 0, MAX_FRAME_LENGTH*SizeOf(float));
; memset(gAnaMagn, 0, MAX_FRAME_LENGTH*SizeOf(float));
; gInit = true;
; }
;
; /* main processing loop */
; For (i = 0; i < numSampsToProcess; i++){
;
; /* As long As we have Not yet collected enough Data just Read in */
; gInFIFO[gRover] = indata[i];
; outdata[i] = gOutFIFO[gRover-inFifoLatency];
; gRover++;
;
; /* now we have enough Data For processing */
; If (gRover >= fftFrameSize) {
; gRover = inFifoLatency;
;
; /* do windowing And re,im interleave */
; For (k = 0; k < fftFrameSize;k++) {
; window = -.5*Cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
; gFFTworksp[2*k] = gInFIFO[k] * window;
; gFFTworksp[2*k+1] = 0.;
; }
;
;
; /* ***************** ANALYSIS ******************* */
; /* do transform */
; smbFft(gFFTworksp, fftFrameSize, -1);
;
; /* this is the analysis Step */
; For (k = 0; k <= fftFrameSize2; k++) {
;
; /* de-interlace FFT buffer */
; real = gFFTworksp[2*k];
; imag = gFFTworksp[2*k+1];
;
; /* compute magnitude And phase */
; magn = 2.*sqrt(real*real + imag*imag);
; phase = ATan2(imag,real);
;
; /* compute phase difference */
; tmp = phase - gLastPhase[k];
; gLastPhase[k] = phase;
;
; /* subtract expected phase difference */
; tmp -= (double)k*expct;
;
; /* Map delta phase into +/- Pi interval */
; qpd = tmp/M_PI;
; If (qpd >= 0) qpd += qpd&1;
; Else qpd -= qpd&1;
; tmp -= M_PI*(double)qpd;
;
; /* get deviation from bin frequency from the +/- Pi interval */
; tmp = osamp*tmp/(2.*M_PI);
;
; /* compute the k-th partials' true frequency */
; tmp = (double)k*freqPerBin + tmp*freqPerBin;
;
; /* store magnitude And true frequency in analysis arrays */
; gAnaMagn[k] = magn;
; gAnaFreq[k] = tmp;
;
; }
;
; /* ***************** PROCESSING ******************* */
; /* this does the actual pitch shifting */
; memset(gSynMagn, 0, fftFrameSize*SizeOf(float));
; memset(gSynFreq, 0, fftFrameSize*SizeOf(float));
; For (k = 0; k <= fftFrameSize2; k++) {
; index = k*pitchShift;
; If (index <= fftFrameSize2) {
; gSynMagn[index] += gAnaMagn[k];
; gSynFreq[index] = gAnaFreq[k] * pitchShift;
; }
; }
;
; /* ***************** SYNTHESIS ******************* */
; /* this is the synthesis Step */
; For (k = 0; k <= fftFrameSize2; k++) {
;
; /* get magnitude And true frequency from synthesis arrays */
; magn = gSynMagn[k];
; tmp = gSynFreq[k];
;
; /* subtract bin mid frequency */
; tmp -= (double)k*freqPerBin;
;
; /* get bin deviation from freq deviation */
; tmp /= freqPerBin;
;
; /* take osamp into account */
; tmp = 2.*M_PI*tmp/osamp;
;
; /* add the overlap phase advance back in */
; tmp += (double)k*expct;
;
; /* accumulate delta phase To get bin phase */
; gSumPhase[k] += tmp;
; phase = gSumPhase[k];
;
; /* get real And imag part And re-interleave */
; gFFTworksp[2*k] = magn*Cos(phase);
; gFFTworksp[2*k+1] = magn*Sin(phase);
; }
;
; /* zero negative frequencies */
; For (k = fftFrameSize+2; k < 2*fftFrameSize; k++) gFFTworksp[k] = 0.;
;
; /* do inverse transform */
; smbFft(gFFTworksp, fftFrameSize, 1);
;
; /* do windowing And add To output accumulator */
; For(k=0; k < fftFrameSize; k++) {
; window = -.5*Cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
; gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp);
; }
; For (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k];
;
; /* shift accumulator */
; memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*SizeOf(float));
;
; /* move input FIFO */
; For (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize];
; }
; }
; }
;
; // -----------------------------------------------------------------------------------------------------------------
;
;
; void smbFft(float *fftBuffer, long fftFrameSize, long sign)
; /*
; FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse)
; Fills fftBuffer[0...2*fftFrameSize-1] With the Fourier transform of the
; time domain Data in fftBuffer[0...2*fftFrameSize-1]. The FFT Array takes
; And returns the cosine And sine parts in an interleaved manner, ie.
; fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize
; must be a power of 2. It expects a complex input signal (see footnote 2),
; ie. when working With 'common' audio signals our input signal has To be
; passed As {in[0],0.,in[1],0.,in[2],0.,...} asf. In that Case, the transform
; of the frequencies of interest is in fftBuffer[0...fftFrameSize].
; */
; {
; float wr, wi, arg, *p1, *p2, temp;
; float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
; long i, bitm, j, le, le2, k;
;
; For (i = 2; i < 2*fftFrameSize-2; i += 2) {
; For (bitm = 2, j = 0; bitm < 2*fftFrameSize; bitm <<= 1) {
; If (i & bitm) j++;
; j <<= 1;
; }
; If (i < j) {
; p1 = fftBuffer+i; p2 = fftBuffer+j;
; temp = *p1; *(p1++) = *p2;
; *(p2++) = temp; temp = *p1;
; *p1 = *p2; *p2 = temp;
; }
; }
; For (k = 0, le = 2; k < (long)(log(fftFrameSize)/log(2.)+.5); k++) {
; le <<= 1;
; le2 = le>>1;
; ur = 1.0;
; ui = 0.0;
; arg = M_PI / (le2>>1);
; wr = Cos(arg);
; wi = sign*Sin(arg);
; For (j = 0; j < le2; j += 2) {
; p1r = fftBuffer+j; p1i = p1r+1;
; p2r = p1r+le2; p2i = p2r+1;
; For (i = j; i < 2*fftFrameSize; i += le) {
; tr = *p2r * ur - *p2i * ui;
; ti = *p2r * ui + *p2i * ur;
; *p2r = *p1r - tr; *p2i = *p1i - ti;
; *p1r += tr; *p1i += ti;
; p1r += le; p1i += le;
; p2r += le; p2i += le;
; }
; tr = ur*wr - ui*wi;
; ui = ur*wi + ui*wr;
; ur = tr;
; }
; }
; }
;
;
; // -----------------------------------------------------------------------------------------------------------------
;
; /*
;
; 12/12/02, smb
;
; PLEASE NOTE:
;
; There have been some reports on domain errors when the ATan2() function was used
; As in the above code. Usually, a domain error should Not interrupt the program flow
; (maybe except in Debug mode) but rather be handled "silently" And a Global variable
; should be set according To this error. However, on some occasions people ran into
; this kind of scenario, so a replacement ATan2() function is provided here.
;
; If you are experiencing domain errors And your program stops, simply replace all
; instances of ATan2() With calls To the smbAtan2() function below.
;
; */
;
;
; double smbAtan2(double x, double y)
; {
; double signx;
; If (x > 0.) signx = 1.;
; Else signx = -1.;
;
; If (x == 0.) Return 0.;
; If (y == 0.) Return signx * M_PI / 2.;
;
; Return ATan2(x, y);
; }
;***********************************************************************
;************** PB TRANSLATION by Psychophanta 20130101 ****************
;***********************************************************************
; * NAME: smbPitchShift.cpp
; * VERSION: 1.2
; * HOME URL: http://www.dspdimension.com
; * KNOWN BUGS: none
; *
; * SYNOPSIS: Routine For doing pitch shifting While maintaining
; * duration using the Short Time Fourier Transform.
; *
; * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
; * (one octave down) And 2. (one octave up). A value of exactly 1 does Not change
; * the pitch. numSampsToProcess tells the routine how many samples in indata[0...
; * numSampsToProcess-1] should be pitch shifted And moved To outdata[0 ...
; * numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
; * Data in-place). fftFrameSize defines the FFT frame size used For the
; * processing. Typical values are 1024, 2048 And 4096. It may be any value <=
; * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
; * oversampling factor which also determines the overlap between adjacent STFT
; * frames. It should at least be 4 For moderate scaling ratios. A value of 32 is
; * recommended For best quality. sampleRate takes the sample rate For the signal
; * in unit Hz, ie. 44100 For 44.1 kHz audio. The Data passed To the routine in
; * indata[] should be in the range [-1.0, 1.0), which is also the output range
; * For the Data, make sure you scale the Data accordingly (For 16bit signed integers
; * you would have To divide (And multiply) by 32768).
; *
; * COPYRIGHT 1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
; *
; * The Wide Open License (WOL)
; *
; * Permission To use, copy, modify, distribute And sell this software And its
; * documentation For any purpose is hereby granted without fee, provided that
; * the above copyright notice And this license appear in all source copies.
; * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS Or IMPLIED WARRANTY OF
; * ANY KIND. See http://www.dspguru.com/wol.htm For more information.
; *
; *****************************************************************************/
;#PI=3.14159265358979323846
#MAX_FRAME_LENGTH=8192
Procedure.f float(a.l)
ProcedureReturn a
EndProcedure
Procedure smbFft(*fftBuffer.float,fftFrameSize.l,sign.l)
; /*
; FFT routine, (C)1996 S.M.Bernsee. Sign=-1 is FFT, 1 is iFFT (inverse)
; Fills fftBuffer[0...2*fftFrameSize-1] With the Fourier transform of the
; time domain Data in fftBuffer[0...2*fftFrameSize-1]. The FFT Array takes
; And returns the cosine And sine parts in an interleaved manner, ie.
; fftBuffer[0]=cosPart[0], fftBuffer[1]=sinPart[0], asf. fftFrameSize
; must be a power of 2. It expects a complex input signal (see footnote 2),
; ie. when working With 'common' audio signals our input signal has To be
; passed As {in[0],0.,in[1],0.,in[2],0.,...} asf. In that Case, the transform
; of the frequencies of interest is in fftBuffer[0...fftFrameSize].
; */
Protected wr.f,wi.f,arg.f,*p1.float,*p2.float,temp.f
Protected tr.f,ti.f,ur.f,ui.f,*p1r.float,*p1i.float,*p2r.float,*p2i.float
Protected i.l,bitm.l,j.l,le.l,le2.l,k.l
i=2
While i<2*fftFrameSize-2
j=0:bitm=2
While bitm<2*fftFrameSize
If i&bitm:j+1:EndIf
j<<1
bitm<<1
Wend
If i<j
p1=*fftBuffer+i:p2=*fftBuffer+j
temp=*p1:*p1+SizeOf(float):*p1=*p2
*p2+SizeOf(float):*p2=temp:temp=*p1
*p1=*p2:*p2=temp
EndIf
i+2
Wend
le=2:k=0
While k<IntQ(Log(fftFrameSize)/Log(2.0)+0.5)
le<<1
le2=le>>1
ur=1.0
ui=0.0
arg=#PI/float(le2>>1)
wr=Cos(arg)
wi=sign*Sin(arg)
j=0
While j<le2
p1r=*fftBuffer+j:p1i=p1r+1
p2r=p1r+le2:p2i=p2r+1
i=j
While i<2*fftFrameSize
tr=*p2r*ur-*p2i*ui
ti=*p2r*ui+*p2i*ur
*p2r=*p1r-tr:*p2i=*p1i-ti
*p1r+tr:*p1i+ti
p1r+le:p1i+le
p2r+le:p2i+le
i+le
Wend
tr=ur*wr-ui*wi
ui=ur*wi+ui*wr
ur=tr
j+2
Wend
k+1
Wend
EndProcedure
Procedure.d smbAtan2(x.d,y.d)
;
; // -----------------------------------------------------------------------------------------------------------------
;
; /*
;
; 12/12/02, smb
;
; PLEASE NOTE:
;
; There have been some reports on domain errors when the ATan2() function was used
; As in the above code. Usually, a domain error should Not interrupt the program flow
; (maybe except in Debug mode) but rather be handled "silently" And a Global variable
; should be set according To this error. However, on some occasions people ran into
; this kind of scenario, so a replacement ATan2() function is provided here.
;
; If you are experiencing domain errors And your program stops, simply replace all
; instances of ATan2() With calls To the smbAtan2() function below.
;
; */
;
;
Protected signx.d
If x>0.0:signx=1.0:Else:signx=-1.0:EndIf
If x=0.0:ProcedureReturn 0.0:EndIf
If y=0.0:ProcedureReturn signx*#PI/2.0:EndIf
ProcedureReturn ATan2(x,y)
EndProcedure
Procedure smbPitchShift(pitchShift.f,numSampsToProcess.l,fftFrameSize.l,osamp.l,sampleRate.f,Array indata.f(1),Array outdata.f(1))
; /*
; Routine smbPitchShift(). See top of file For explanation
; Purpose: doing pitch shifting While maintaining duration using the Short
; Time Fourier Transform.
; Author: (c)1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
; */
Static Dim gInFIFO.f(#MAX_FRAME_LENGTH)
Static Dim gOutFIFO.f(#MAX_FRAME_LENGTH)
Static Dim gFFTworksp.f(2*#MAX_FRAME_LENGTH)
Static Dim gLastPhase.f(#MAX_FRAME_LENGTH/2+1)
Static Dim gSumPhase.f(#MAX_FRAME_LENGTH/2+1)
Static Dim gOutputAccum.f(2*#MAX_FRAME_LENGTH)
Static Dim gAnaFreq.f(#MAX_FRAME_LENGTH)
Static Dim gAnaMagn.f(#MAX_FRAME_LENGTH)
Static Dim gSynFreq.f(#MAX_FRAME_LENGTH)
Static Dim gSynMagn.f(#MAX_FRAME_LENGTH)
Static gRover.l=#False,gInit.l=#False
Protected magn.d,phase.d,tmp.d,window.d,real.d,imag.d
Protected freqPerBin.d,expct.d
Protected i.l,k.l,qpd.l,index.l,inFifoLatency.l,stepSize.l,fftFrameSize2.l
; /* set up some handy variables */
fftFrameSize2=fftFrameSize/2
stepSize=fftFrameSize/osamp
freqPerBin=sampleRate/fftFrameSize
expct=2.0*#PI*stepSize/fftFrameSize
inFifoLatency=fftFrameSize-stepSize
If gRover=#False:gRover=inFifoLatency:EndIf
; /* initialize our Static arrays */
If gInit=#False
FillMemory(gInFIFO(),#MAX_FRAME_LENGTH*SizeOf(float))
FillMemory(gOutFIFO(),#MAX_FRAME_LENGTH*SizeOf(float))
FillMemory(gFFTworksp(),2*#MAX_FRAME_LENGTH*SizeOf(float))
FillMemory(gLastPhase(),(#MAX_FRAME_LENGTH/2+1)*SizeOf(float))
FillMemory(gSumPhase(),(#MAX_FRAME_LENGTH/2+1)*SizeOf(float))
FillMemory(gOutputAccum(),2*#MAX_FRAME_LENGTH*SizeOf(float))
FillMemory(gAnaFreq(),#MAX_FRAME_LENGTH*SizeOf(float))
FillMemory(gAnaMagn(),#MAX_FRAME_LENGTH*SizeOf(float))
gInit=#True
EndIf
; /* main processing loop */
i=0
While i<numSampsToProcess
; /* As long As we have Not yet collected enough Data just Read in */
gInFIFO(gRover)=indata(i)
outdata(i)=gOutFIFO(gRover-inFifoLatency)
gRover+1
; /* now we have enough Data For processing */
If gRover>=fftFrameSize
gRover=inFifoLatency
; /* do windowing And re,im interleave */
k=0
While k<fftFrameSize
window=-0.5*Cos(2.0*#PI*k/fftFrameSize)+0.5
gFFTworksp(2*k)=gInFIFO(k)*window
gFFTworksp(2*k+1)=0.0
k+1
Wend
EndIf
; /* ***************** ANALYSIS ******************* */
; /* do transform */
smbFft(gFFTworksp,fftFrameSize,-1)
; /* this is the analysis Step */
k=0
While k<=fftFrameSize2
; /* de-interlace FFT buffer */
real=gFFTworksp(2*k)
imag=gFFTworksp(2*k+1)
; /* compute magnitude And phase */
magn=2.0*Sqr(real*real+imag*imag)
phase=ATan2(imag,real)
; /* compute phase difference */
tmp=phase-gLastPhase(k)
gLastPhase(k)=phase
; /* subtract expected phase difference */
tmp-k*expct
; /* Map delta phase into +/- Pi interval */
qpd=tmp/#PI
If qpd>=0:qpd+qpd&1:Else:qpd-qpd&1:EndIf
tmp-#PI*qpd
; /* get deviation from bin frequency from the +/- Pi interval */
tmp=osamp*tmp/(2.0*#PI)
; /* compute the k-th partials' true frequency */
tmp=k*freqPerBin+tmp*freqPerBin
; /* store magnitude And true frequency in analysis arrays */
gAnaMagn(k)=magn
gAnaFreq(k)=tmp
k+1
Wend
; /* ***************** PROCESSING ******************* */
; /* this does the actual pitch shifting */
FillMemory(gSynMagn,fftFrameSize*SizeOf(float))
FillMemory(gSynFreq,fftFrameSize*SizeOf(float))
k=0
While k<=fftFrameSize2
index=k*pitchShift
If index<=fftFrameSize2
gSynMagn(index)+gAnaMagn(k)
gSynFreq(index)=gAnaFreq(k)*pitchShift
EndIf
k+1
Wend
; /* ***************** SYNTHESIS ******************* */
; /* this is the synthesis Step */
k=0
While k<=fftFrameSize2
; /* get magnitude And true frequency from synthesis arrays */
magn=gSynMagn(k)
tmp=gSynFreq(k)
; /* subtract bin mid frequency */
tmp-k*freqPerBin
; /* get bin deviation from freq deviation */
tmp/freqPerBin
; /* take osamp into account */
tmp=2.0*#PI*tmp/osamp
; /* add the overlap phase advance back in */
tmp+k*expct
; /* accumulate delta phase To get bin phase */
gSumPhase(k)+tmp
phase=gSumPhase(k)
; /* get real And imag part And re-interleave */
gFFTworksp(2*k)=magn*Cos(phase)
gFFTworksp(2*k+1)=magn*Sin(phase)
k+1
Wend
; /* zero negative frequencies */
k=fftFrameSize+2:While k<2*fftFrameSize:gFFTworksp(k)=0.0:k+1:Wend
; /* do inverse transform */
smbFft(gFFTworksp,fftFrameSize,1)
; /* do windowing And add To output accumulator */
k=0
While k<fftFrameSize
window=-0.5*Cos(2.0*#PI*k/fftFrameSize)+0.5
gOutputAccum(k)+2.0*window*gFFTworksp(2*k)/(fftFrameSize2*osamp)
k+1
Wend
k=0:While k<stepSize:gOutFIFO(k)=gOutputAccum(k):k+1:Wend
; /* shift accumulator */
MoveMemory(gOutputAccum+stepSize,gOutputAccum,fftFrameSize*SizeOf(float))
; /* move input FIFO */
k=0
While k<inFifoLatency:gInFIFO(k)=gInFIFO(k+stepSize):k+1:Wend
i+1
Wend
EndProcedure
;\