Requires wilbert's bigint module: http://www.purebasic.fr/english/viewtop ... 12&t=61309
You can run the module to see it do a self test which demonstrates 4096 key generation and raw encrypt/decrypt.
Release history:
0.9 - 2014-Oct-03 - initial pre-release (WIP) no key generation or decrypt
1.0 - 2014-Dec-01 - first functional release, renamed file to cc2rsa.pbi
1.1 - 2014-Dec-17 - speed optimisations by wilbert, switch to little endian quad storage
1.2 - 2015-Feb-18 - now uses wilbert's bigint module (much faster)
1.3 - 2016-Mar-15 - key generation added
1.4 - 2016-Mar-16 - first complete release, raw encrypt/decrypt added
1.5 - 2016-Mar-17 - added optimisation for generating keys, other simplifications. Now generates 4096 bit keys 10 times faster.
1.6 - 2016-Jul-13 - Uses CryptRandom() instead of just Random() in key generation
Code: Select all
; cc2rsa.pbi==================================================================================================================================================
; PureBASIC RSA Cipher module
; Module version: 1.6
; Platform: Windows, Linux, Mac
; CPU architechtures: x86, x64
; Requirements: bigint.pbi - see notes
; Developed on: PB 5.41 LTS (x64); Windows 7 x64
; Author: Coco2
; Thanks to: wilbert
; Created:  17-Jun-2014
; License: open (no restrictions)
; Release history:
;   0.9    - 2014-Oct-03 - initial pre-release
;   1.0    - 2014-Dec-01 - first functional release, renamed file to cc2rsa.pbi
;   1.1    - 2014-Dec-17 - speed optimisations by wilbert, switch to little endian quad storage
;   1.2    - 2015-Feb-18 - now uses wilbert's bigint module (much faster)
;   1.3    - 2016-Mar-15 - key generation added
;   1.4    - 2016-Mar-16 - first complete release, raw encrypt/decrypt added
;   1.5    - 2016-Mar-17 - added optimisation for generating keys, other simplifications. Now generates 4096 bit keys 10 times faster.
;   1.6    - 2016-Jul-13 - Uses CryptRandom() instead of just Random() in key generation
;
; Provided "as is" with no warranty and no liability.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
; LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
; SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
; CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
; POSSIBILITY OF SUCH DAMAGE.
;
;
; Notes:
; 1. The authors/copyright holder(s) of this module are not affiliated with the PureBasic software authors/copyright holders.
;
; 2. Wilbert's bigint module:
;    http://www.purebasic.fr/english/viewtopic.php?f=12&t=61309
;    *** Note: remember to set #BigIntBits to the highest setting you want to use, eg- 4096
;
; 3. This module is still in an early testing phase. For production purposes use an existing security package.
;
; ============================================================================================================================================================
; Further reading and credits:
; 
; - RFCs 2313, 2437, 3447
; - Implementing SSL / TLS Using Cryptography and PKI (ISBN: 978-0-470-92041-1)
; - SCV Cryptomanager (test keys) http://cryptomanager.com/tv.html
; - RSA Algorithm http://www.di-mgt.com.au/rsa_alg.html
;
; ============================================================================================================================================================
;- Module includes
#BigIntLocation = ""
XIncludeFile(#BigIntLocation + "bigint.pbi")
DeclareModule Cc2RSA
  
  ;- Structures
  
  Structure RSAKeyPair
    ; Public key: N,e
    ; Private key: N,d
    KeySize.i
    ; Source values
    p.BigInt::BigInt
    q.BigInt::BigInt
    Phi.BigInt::BigInt
    ; Keypair ((N, e), d)
    ; The public keypair is (N,e)
    ; The private keypair is (N,d)
    Modulus.BigInt::BigInt ; N - public
    PublicExponent.BigInt::BigInt ; e - $010001
    SecretExponent.BigInt::BigInt ; d - private
  EndStructure
  
  ;- Procedure declares
  
  Declare.i GenerateKeyPair (*k.RSAKeyPair, bits.i=2048)
  Declare.i RSAProcessRaw (*Output.BigInt::BigInt, *Input.BigInt::BigInt, *K.RSAKeyPair, Key.i = 0)
  Declare SelfTest()
  
EndDeclareModule
Module Cc2RSA
  
  CompilerIf #PB_Compiler_IsMainFile
    EnableExplicit
  CompilerEndIf
  
  ;- Internal Procedures
  
  Procedure.i Composite(*n.BigInt::BigInt)
    ; Checks if a BigInt is composite by trial division
    ; Returns 0 = possibly prime, 1 = composite
    Restore PrimeLookup
    Protected.i Result=0
    Protected.i a0
    Protected.q a1
    Protected.BigInt::BigInt n0, n1, n2
    For a0 = 1 To 1000
      Read.i a1
      BigInt::SetValue(n0, a1)
      BigInt::Divide(n1, *n, n0, n2)
      If BigInt::IsZero(n2) : Result = 1 : Break : EndIf
    Next
    ProcedureReturn Result
  EndProcedure
  
  Procedure.i MillerRabin(*n.BigInt::BigInt, k.i)
    ; k is number of iterations, each test reduces the odds by 1/4
    ; 40 is the most you would use. 6 is enough for a 1024 bit number
    ; Returns 0 if composite, 1 if probably prime
    Protected.i Result=1 ; probably prime by default
    Protected.BigInt::BigInt nm1, d
    Protected.BigInt::BigInt n0, n1 ; scratch variables for calculations
    Protected.BigInt::BigInt x
    Protected.i r=0
    Protected.i s=0
    Protected.i Rand_Size    
    BigInt::SetValue(n1, 1)
    BigInt::Assign(nm1, *n)
    BigInt::Subtract(nm1, n1)
    BigInt::Assign(d, nm1)
    While BigInt::GetBit(d, 0)
      BigInt::Shr1(d) : s + 1
    Wend
    OpenCryptRandom()
    While k>0
      k=k-1
      Rand_Size = CryptRandom(BigInt::NumberSize(*n)-2) + 1 ; random number of length between 1 and SizeOf(*n)-1 in bytes
      BigInt::SetValue(n0, 0) : CryptRandomData(n0, Rand_Size)
      BigInt::SetBit(n0, 1) ; set bit so value is at least 2
      BigInt::ModPow(x, n0, d, *n)
      If BigInt::Compare(x, n1)=0 Or BigInt::Compare(x, nm1)=0 : Continue : EndIf  
      For r=1 To s-1
        BigInt::ModMul(x, x, *n) ; x=(x*x)%n
        If BigInt::Compare(x, n1)=0 : Result = 0 : Break 2 : EndIf 
        If BigInt::Compare(x, nm1)=0 : Break : EndIf
      Next
      If BigInt::Compare(x, nm1)<>0 : Result = 0 : Break : EndIf
    Wend
    CloseCryptRandom()
    ProcedureReturn Result
  EndProcedure
  
  Procedure ModInv(*d.BigInt::BigInt, *e.BigInt::BigInt, *p.BigInt::BigInt)
    ; Calculate d=e^-1 mod p
    Protected.BigInt::BigInt d, bal, count, st
    Protected.BigInt::BigInt n0
    Protected.i b1 ; loop condition variable
    BigInt::SetValue(*d, 0)
    BigInt::SetValue(count, 1)
    BigInt::SetValue(bal, 0) : BigInt::Add(bal, *e)
    b1=0
    Repeat
      BigInt::SetValue(st, 0) : BigInt::Add(st, *p) : BigInt::Subtract(st, bal)
      BigInt::Divide(st, st, *e, n0) : BigInt::SetValue(n0, 1) : BigInt::Add(st, n0)
      BigInt::SetValue(n0, 0) : BigInt::Add(n0, st) : BigInt::Multiply(n0, *e) : BigInt::Add(bal, n0)
      BigInt::Add(count, st)
      BigInt::Subtract(bal, *p)
      BigInt::SetValue(n0, 1) : If BigInt::Compare(bal, n0)=0 : b1=1 : EndIf
    Until b1=1
    BigInt::SetValue(*d, 0) : BigInt::Add(*d, count)
  EndProcedure  
  
  Procedure.i GeneratePrime(*n.BigInt::BigInt, l.i)
    ; generates a prime of length l (in bits eg- 512, 1024, 2048)
    ; returns *n
    Protected *RandN
    Protected.i Result = 0 ; failed by default
    Protected.BigInt::BigInt n0
    Protected.i ByteSize = (l >> 3); convert number of bits into a byte size amount (4096 = 256 bytes)
    Protected.i PrimeFound=0       ; loop test
    *RandN = AllocateMemory(ByteSize)
    If *RandN
      OpenCryptRandom()
      CryptRandomData(*RandN, ByteSize)
      CloseCryptRandom()
      BigInt::LoadValue(*n, *RandN, ByteSize, #True)
      ; [0..l..#BigIntBits]
      BigInt::SetBit(*n, 0) ; set the least significant bit to 1
      BigInt::SetBit(*n, l-1) ; set the two most significant bits to 1
      BigInt::SetBit(*n, l-2)
      BigInt::SetValue(n0, 2)
      Repeat
        If Not Composite(*n)
          If MillerRabin(*n, 40)
            PrimeFound=1
          EndIf
        EndIf
        If Not PrimeFound : BigInt::Add(*n, n0): EndIf
      Until PrimeFound
    EndIf
    Result = 1 ; success
    FreeMemory(*RandN)
    ProcedureReturn Result
  EndProcedure
  
  ;- Declared procedures 
  
  Procedure.i GenerateKeyPair (*k.RSAKeyPair, bits.i=2048)
    ; returns 1=success or 0=fail
    ; Common key sizes (as of 2016):
    ; 1024 - slightly outdated
    ; 2048 - presumably secure
    ; 3072 - secure
    ; 4096 - very secure
    ; 5120, 6144, 7168 - future key sizes
    Protected.i Result=0, t1
    Protected.BigInt::BigInt n0, n1, n2, n3
    If bits>=1024 And bits%1024=0
      Debug "Generating " + bits + " bit key pair..."
      *k\KeySize = bits
      BigInt::SetValue(*k\PublicExponent, $010001)
      BigInt::SetValue(n2, 1)
      Repeat
        GeneratePrime(*k\p, bits/2)
        BigInt::Divide(n0, *k\p, *k\PublicExponent, n1)
      Until BigInt::Compare(n1, n2)<>0 ; make sure p mod e doesn't equal 1
      Repeat
        GeneratePrime(*k\q, bits/2)
        BigInt::Divide(n0, *k\q, *k\PublicExponent, n1)
      Until BigInt::Compare(n1, n2)<>0 ; make sure q mod e doesn't equal 1
      BigInt::SetValue(*k\Modulus, 0)
      BigInt::Add(*k\Modulus, *k\p)
      BigInt::Multiply(*k\Modulus, *k\q)
      ; Calculate phi
      BigInt::SetValue(n0, 0) : BigInt::Add(n0,*k\p)
      BigInt::SetValue(n1, 1) : BigInt::Subtract(n0,n1)
      BigInt::SetValue(n2, 0) : BigInt::Add(n2,*k\q)
      BigInt::SetValue(n3, 1) : BigInt::Subtract(n2,n3)
      BigInt::Multiply(n0, n2) : BigInt::SetValue(*k\phi, 0)
      BigInt::Add(*k\phi, n0)
      ; Calculate secret exponent
      ModInv(*k\SecretExponent, *k\PublicExponent, *k\phi)
      Result=1
    Else
      Debug "Bits must be multiple of 1024"
      Result=0
    EndIf
    ProcedureReturn Result
  EndProcedure
  
  Procedure.i RSAProcessRaw (*Output.BigInt::BigInt, *Input.BigInt::BigInt, *K.RSAKeyPair, Key.i = 0)
    ; Processes BigInt numbers without any padding (adds zeros instead of padding)
    ; KeyAction: 0 for public key, 1 for secret (private) key
    ; Returns 0 if unsuccessful, 1 if success
    ; To use BigInt::ModPow() with RSA encryption:
    ; Encrypt:
    ;   BigInt::ModPow(output, input, e, N)
    ; Decrypt:
    ;   BigInt::ModPow(output, encrypted_data, d, N)
    Protected.i Result=0, d0, kp, ks, km
    d0=BigInt::NumberSize(*Input)<<3
    kp=BigInt::NumberSize(*K\PublicExponent)<<3
    ks=BigInt::NumberSize(*K\SecretExponent)<<3
    km=BigInt::NumberSize(*K\Modulus)<<3
    If *K\KeySize>=1024 And *K\KeySize%1024=0 ; check key is a multiple of 1024 or greater
      If d0<=*K\KeySize ; check the data is not too large
        If key = 0 ; use public key
          If kp=24 And km=*K\KeySize ; check public key is present (note: $010001 = 24 bit)
            BigInt::ModPow(*Output, *Input, *K\PublicExponent, *K\Modulus)
            Result=1
          Else
            Debug "Public key invalid"
          EndIf
        Else ; use secret key
          If ks=*K\KeySize And km=*K\KeySize ; check private key is present
            BigInt::ModPow(*Output, *Input, *K\SecretExponent, *K\Modulus)
            Result=1
          Else
            Debug "Secret key invalid"
          EndIf
        EndIf
      Else
        Debug "Input data (" + d0 + " bits) larger than key"
      EndIf
    Else
      Debug "Key size (" + *K\KeySize + " bits) invalid"
    EndIf
    ProcedureReturn Result
  EndProcedure  
  
  Procedure SelfTest()
    Protected.RSAKeyPair K
    Protected.BigInt::BigInt data1, data2 
    Protected.i StartTime, TotalTime
    Debug "Self test"
    StartTime = ElapsedMilliseconds()
    If GenerateKeyPair(K, 2048)
      TotalTime = ElapsedMilliseconds() - StartTime
      Debug("Key generation time: " + Str(TotalTime) + " ms")
      Debug "e: " + BigInt::GetHex(K\PublicExponent)    
      Debug "n: " + BigInt::GetHex(K\Modulus)
      Debug "d: " + BigInt::GetHex(K\SecretExponent)
      BigInt::SetHexValue(data1, "11223344556677889900")
      Debug "Data: " + BigInt::GetHex(data1)
      Debug "Encrypting..."
      StartTime = ElapsedMilliseconds()
      If RSAProcessRaw(data2, data1, K) ; Process data with public key
        TotalTime = ElapsedMilliseconds() - StartTime
        Debug("Total encrypt time: " + Str(TotalTime) + " ms")
        Debug "Encrypted data: " + BigInt::GetHex(data2)
        Debug "Decrypting..."
        StartTime.i = ElapsedMilliseconds()
        If RSAProcessRaw(data1, data2, K, 1) ; use secret key on the data (decrypts the previous RSAProcess)
          TotalTime.i = ElapsedMilliseconds() - StartTime
          Debug "Decrypted data: " + BigInt::GetHex(data1)
          Debug("Total decrypt time: " + Str(TotalTime) + " ms")    
        EndIf
      EndIf
    EndIf
  EndProcedure
  
  CompilerIf #PB_Compiler_IsMainFile
    SelfTest()
  CompilerEndIf
  
  DataSection
  
    PrimeLookup:
    Data.i 3,    5,    7,    11,   13,   17,   19,   23,   29,   31,   37,   41,   43,   47,   53,   59,   61,   67,   71,   73,
           79,   83,   89,   97,   101,  103,  107,  109,  113,  127,  131,  137,  139,  149,  151,  157,  163,  167,  173,  179,
           181,  191,  193,  197,  199,  211,  223,  227,  229,  233,  239,  241,  251,  257,  263,  269,  271,  277,  281,  283,
           293,  307,  311,  313,  317,  331,  337,  347,  349,  353,  359,  367,  373,  379,  383,  389,  397,  401,  409,  419,
           421,  431,  433,  439,  443,  449,  457,  461,  463,  467,  479,  487,  491,  499,  503,  509,  521,  523,  541,  547,
           557,  563,  569,  571,  577,  587,  593,  599,  601,  607,  613,  617,  619,  631,  641,  643,  647,  653,  659,  661,
           673,  677,  683,  691,  701,  709,  719,  727,  733,  739,  743,  751,  757,  761,  769,  773,  787,  797,  809,  811,
           821,  823,  827,  829,  839,  853,  857,  859,  863,  877,  881,  883,  887,  907,  911,  919,  929,  937,  941,  947,
           953,  967,  971,  977,  983,  991,  997,  1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
           1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229,
           1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381,
           1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
           1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663,
           1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823,
           1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993,
           1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
           2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293,
           2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437,
           2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621,
           2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749,
           2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909,
           2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083,
           3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259,
           3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433,
           3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581,
           3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733,
           3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911,
           3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073,
           4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241,
           4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421,
           4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591,
           4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759,
           4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943,
           4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099,
           5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281,
           5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449,
           5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641,
           5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801,
           5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953,
           5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143,
           6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311,
           6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481,
           6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679,
           6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841,
           6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001,
           7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211,
           7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417,
           7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573,
           7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727,
           7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927
    
  EndDataSection
  
EndModule


